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Repeated cross-sectional (RCS) designs are distinguishable from true panels and pooled cross-sectional time series (PCSTS)
since cross-sectional units (e.g., individual survey respondents) appear but once in the data. This poses two serious challenges.
First, as with PCSTS, autocorrelation threatens inferences. However, common solutions like differencing and using a lagged
dependent variable are not possible with RCS since lags for i cannot be used. Second, although RCS designs contain
information that allows both aggregate- and individual-level analyses, available methods—from pooled ordinary least
squares to PCSTS to time series—force researchers to choose one level of analysis. The PCSTS tool kit does not provide an
appropriate solution, and we offer one here: double filtering with ARFIMA methods to account for autocorrelation in longer
RCS followed by the use of multilevel modeling to estimate both aggregate- and individual-level parameters simultaneously.
We use Monte Carlo experiments and three applied examples to explore the advantages of our framework.

There is an important distinction to be made be-
tween data sets comprising the same observations
over multiple time-points (true panels or pooled

cross-sectional time series [PCSTS]) and those where the
set of observations is not identical across all waves. The
latter, what we call “pseudo-panels,” have become in-
creasingly common in political science and other social
sciences.

Two types of pseudo-panel structures are distinguish-
able: the repeated cross-sectional (RCS) design and the
“unbalanced panel.” The latter has units that appear
more than once, but not all cases appear in every time
period.1 Honaker and King (2010) discuss the unbal-
anced panel as a missing data problem and provide a
multiple-imputation solution.2 Yet, their solution cannot
be applied where all but one observation of each case is
missing in a data set comprised of multiple time-points.
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1See, e.g., Canes-Wrone, Brady, and Cogan (2002), Brown and Mobarak (2009), and Voeten (2008).

2This is especially useful for studies of international politics where cases like developing countries enter and leave the data set at different
times or where other gaps appear in available data.

In RCS designs, this is exactly the problem. Whether it
is a set of Gallup respondents nested within months,
Supreme Court cases nested within court terms, or roll-
call votes nested within congressional sessions, a unique
set of cross-sectional units appears at each time-point.

In this article, we identify the statistical problems in-
herent in longer RCS designs and propose a method that
negates autocorrelation problems. We estimate effects at
two levels of analysis simultaneously and provide a reli-
able way to study time-varying relationships. Specifically,
we use an autoregressive fractionally integrated moving
average (ARFIMA) model to deal with autocorrelation
at the aggregate level and then use a second filter, akin
to mean centering in PCSTS designs, so that individual-
level observations are also free of autocorrelation. Last,
a multilevel model (MLM) estimates both individual-
and aggregate-level effects while offering flexibility in
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studying time-varying relationships. Our approach is not
the first to propose using MLM for RCS data (see, e.g.,
Hopkins 2012; Lau, Anderson, and Redlawsk 2008), but
it is the first to use a top-down approach. That is, we
do not begin with microlevel data and apply fixes to the
macro level. Instead, we use the techniques proven to be
the most reliable for longer aggregate-level time-series
analysis and then nest the individual-level data within the
aggregates.

The article proceeds as follows: We first detail the
properties of RCS data and discuss problems with avail-
able modeling techniques. Following that, we outline
our ARFIMA-MLM method and present simulations that
compare it to several alternatives. We then offer sugges-
tions for applying our model to shorter RCS data and
to true and unbalanced panels. Finally, we demonstrate
our model in three separate examples using data from
economic voting (Hopkins 2012), congressional behav-
ior (Lebo, McGlynn, and Koger 2007), and the 2008
Annenberg Study (Kenski, Hardy, and Hall Jamieson
2010).

The Repeated Cross-Sectional Design

As a collection of individual-level data repeated at reg-
ular intervals, the RCS data structure can be extremely
useful by adding a dynamic component to the study of
cross-sectional units and by allowing the investigation of
time-varying relationships.3 RCS designs are increasingly
prevalent in part due to the many ways in which they
can be created.4 The National Annenberg Election Study
(NAES), for example, collected data on unique samples
of voters for every day of three presidential election cam-
paigns. Or one can create an RCS of over 300 months us-
ing CBS/NYT polls archived at the Interuniversity Con-
sortium for Political and Social Research (ICPSR). The
same can be done with hundreds of consecutive months
of Gallup polls or Michigan’s Survey of Consumers (e.g.,
Clarke, Stewart, Ault, and Elliott 2005; Hopkins 2012).5

3In survey research, RCS designs also give researchers many benefits
of traditional panel designs, but problems of attrition and response
bias are avoided and sample sizes can be held steady.

4We do not use the terms repeated cross-section and rolling cross-
section interchangeably. We take rolling to apply only to a survey
design where all of the sample is identified at some initial time-point
and the surveys are rolled out to sets of respondents at staggered
dates. The Annenberg Study fits this description. Thus, a rolling
cross-sectional design is one type of repeated cross-sectional design.

5Variables might not be measured in the same way across waves,
and this can require corrections. Additionally, some RCS data sets
may consist of surveys taken at irregular intervals. For example,
Jerit, Barabas, and Bolsen (2006) pool dozens of Princeton Survey
Research Associates surveys to study political knowledge over a

And those are just some public opinion examples.
Congressional roll calls nested within years since 1789
(Lebo, McGlynn, and Koger 2007), cases nested within
Supreme Court terms since 1946 (Segal and Spaeth 2002),
and public remarks by presidents nested within quarters
since 1945 (Wood 2009) all fit the RCS format.6 RCS
data are widespread, and, as with longer pseudo- and
true panels, the dynamic implications are rarely explored.
Looking at just the 2010–13 issues of American Political
Science Review and American Journal of Political Science,
we find 42 articles where the underlying data structure—
RCS, pseudo-panel, or true panel—could allow the use of
our approach.7

Absent multilevel models, researchers have chosen to
study RCS data in either the aggregate or the individual
level. For the latter, some have simply pooled observa-
tions from all time-points (e.g., Jerit and Barabas 2012;
Moy, Xenos, and Hess 2006; Romer 2006; Stroud 2008)
or pooled subperiods of data (e.g., Blaydes and Chaney
2013 pool data from 700–1500 ACE by century). Pooling
treats observations as if they were collected in a single
cross-section. However, if units within time-points share
unmeasured commonalities, standard errors may be in-
correct. Or if one filters the time component via fixed
effects to control for between-time-point effects, it limits
the exploration to static processes and also assumes that
parameter estimates pool around a common value. So
pooling has its problems.

Alternately, one can skip individual-level analyses by
collapsing data into mean values and applying time-series
analyses to the aggregate data. Box-Steffensmeier, DeBoef,
and Lin (2004), for example, study the gender gap using
all available CBS/NYT surveys dating back to 1977 but
aggregate respondents by quarter. In all, they use the re-
sponses of over 250,000 unique individuals, yet they an-
alyze just 87 quarters of data (2004, 525).8 Studying data

10-year period. But the frequency of the surveys is lumpy from
year to year—some years have three surveys, some have none. The
dynamic properties in such studies are beyond the scope of this
article.

6For each of these, there should be concerns about autocorrelation
at the aggregate level; party unity, Supreme Court liberalism, and
presidential liberalism all exhibit time-dependent serial correlation.

7See Table S1 in the supporting information for a list that in-
cludes RCS structures and longer panels and pseudo-panels (e.g.,
the Polity IV data). Our approach may be useful where data are
collected over a period that can or should be neatly segmented to
account for dynamics over many time-points.

8Similar aggregation strategies have been used to study consumer
confidence (DeBoef and Kellstedt 2004), opinion change in re-
sponse to political and social events (Green and Shapiro 1994),
and Supreme Court decisions over time (Mishler and Sheehan
1996). Johnston, Hagen, and Hall Jamieson (2004) study dynamic
campaign effects by aggregating responses over multiple days of the
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in the aggregate has theoretical support if causal ordering
at the individual level is in question. For example, in the
economic voting literature, Kramer (1983) argues that the
state of the economy is an objective fact, and individuals’
evaluations of it are either survey error or “partisanship,
thinly disguised.”9

If some independent variables vary only over time
(e.g., the inflation rate) there is a natural tendency to
construct a model in the aggregate. Yet, aggregating par-
ticipants by day/week/month/quarter can reduce data sets
to a thousandth of their original size. Indeed, none of the
pivotal aggregate studies mentioned has taken full ad-
vantage of the RCS framework where heterogeneity exists
within as well as between time-points. Since a multilevel
model allows the use of all the data, the aggregate- versus
individual-level debate is a false dichotomy. Researchers
can explore complex relationships rather than entirely
avoid an important level of analysis. In doing so, they can
also investigate individual-level relationships that might
vary over time.

Thus, two problems are evident. First, most published
work using RCS has relied on techniques that study static
or dynamic processes, not both. Second, ventures into
MLM with RCS data have barely considered the statistical
consequences of the various modeling choices. Given the
wealth of RCS data available, we explore its challenges and
consider the efficacy of several modeling choices.

Panels versus RCS: What’s the Difference?

In a true panel design, N units are observed repeatedly
over time, yielding an N × T data set and making auto-
correlation likely in two directions. First, unit i at time t
will be more correlated with unit j at time t than with unit
j at other times. Second, the values for each unit i are likely
correlated with each other over time. For example, in a
Country by Year data set, regression errors are likely to
be correlated within years as well as for each country. Im-
portantly, neither type of autocorrelation disappears in an
RCS design even though units are not repeated. First, dy-
namic autocorrelation remains. Memory over time, trace-
able through aggregates, likely exists between units more
proximate to one another. If Ȳ t and Ȳ t+1 are correlated,
then εi,t is correlated with εj,t+1 more than εi,t is corre-

NAES while examining the individual-level data in separate mod-
els. Carey and Lebo (2006) use both levels of data in 70 consecutive
months of British Gallup data to examine prospective versus retro-
spective voting models over a campaign cycle.

9Similar arguments can be found in MacKuen, Erikson, and Stim-
son (1989), DeBoef and Kellstedt (2004), and Box-Steffensmeier,
DeBoef, and Lin (2004).

lated with εk,t+2.10 This holds since observations within
each time-point are dispersed around a mean correlated
with the mean of the adjacent time-point. That is, since
Ȳ t = E(yi,t) and corr (Ȳ t and Ȳ t+1) � 0, then corr(E(yi,t),
E(yi,t+1)) � 0 and corr(E(εi,t), E(εi,t+1)) � 0. Second,
autocorrelated errors also exist due to day- (or month-,
quarter-, or year-) specific effects.

How are these challenges to be handled? To begin,
two common PCSTS approaches cannot or should not
be used. Including a lagged dependent variable (LDV) is
a popular way to handle problems of nonstationarity in
PCSTS and traditional time series (Keele and Kelly 2006).
A second alternative, looking at the differences in obser-
vations between time-points to render a random-walk
series stationary, is also popular (Enders 2004). Yet, since
each observation occurs but once in RCS data, these ap-
proaches cannot work. Values of yi,t–1 are not available,
so an LDV is not possible, nor is the use of a differenced
dependent variable,�yi,t , created as yi,t – yi,t–1. A third un-
workable approach, the use of panel-corrected standard
errors (Beck and Katz 1995), is premised on observations
repeating in every time-point (a true panel) and does not
solve the potential bias in coefficients.11

As an RCS gets longer, the possibilities of model-
ing dynamic processes increase and should be pursued.
Modeling both dynamic and static processes together is a
challenge with promise, so long as the results are reliable.
This can be done in a multilevel framework, and, within
that structure, time-series filtering techniques can correct
for the problems presented by autocorrelation. Next, we
discuss fractional integration and outline the specifics of
our ARFIMA-MLM approach.

ARFIMA Methods for Aggregate
(Level-2) Data

The statistical properties of longer RCS data—once
aggregated—have been well established. For example,
provided enough time-points, monthly and quarterly
public opinion data consistently prove to be fraction-
ally integrated (“long-memory”) when tested (Box-
Steffensmeier, DeBoef, and Lin 2004; Box-Steffensmeier
and Smith 1996, 1998; Byers, Davidson, and Peel 2000;

10Recent studies have consistently established that corr(Ȳ t , Ȳ t+1) �=
0 in aggregate political time series (see, e.g., Box-Steffensmeier and
Smith 1996; Lebo, Walker, and Clarke 2000).

11To this list, one could add Honaker and King’s (2010) imputation
in “unbalanced panels,” which cannot be used in an RCS design
where each case has data missing from every wave but one.
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Clarke and Lebo 2003; Lebo, Walker, and Clarke 2000).12

Fractional integration has also been found in aggregate
studies of congressional roll-call data (Lebo, McGlynn,
and Koger 2007), Supreme Court decisions (Hurwitz and
Lanier 2004; Lanier 2003), crime statistics (Greenberg
2001), and campaign expenditures (Box-Steffensmeier,
Darmofal, and Farrell 2009).

The correct level of integration—be it zero, one, or
something in between—must be estimated and used to
difference a time series in order to get trustworthy infer-
ences. This has been shown from early work by Granger
and Newbold (1974) to Box and Jenkins’s (1976) tech-
niques to more recent work on fractional integration
(Lebo, Walker, and Clarke 2000; Tsay and Chung 2000). To
study RCS data at two levels of analysis, the strategy must
account for the properties of the aggregate-level (level-2)
data.13 Estimating the (p,d,q) parameters of an ARFIMA
model at the aggregate level (level-2) is our first step:14

(1 − L )d Ȳ t = (1 − �q L q )

(1 − �p L p)
εt, (1)

whereY t represents the observed mean of all yi within
month t; L is the lag operator such that LkYt = Yt–k; d
is the fractional differencing parameter, the number of
differences needed to render the series stationary;15 �p

represents stationary autoregressive (AR) parameters of
order p; �q represents q moving average (MA) parame-
ters; and εt is a white noise error term for the level-2
disturbances.

The first filter regresses Ȳ t on its noise model (p,d,q)
to create Ȳ ∗

t , a stationary series of residuals free of auto-
correlation:

Ȳ ∗
t = (1 − L )d Ȳ t × (1 − �p L p)

(1 − �q L q )
. (2)

12According to Granger’s (1980) aggregation theorem, if Xt is cre-
ated by aggregating individual units such that xi,t = �i xi,t−1 + εt

and �i ∼ �(0, 1), the heterogeneous autoregressive behavior (note
the subscript on �) means that Xt will be a fractionally integrated
time series. For public opinion, the heterogeneity assumption fits
the literature on the distribution of information and political so-
phistication in the electorate (e.g., Box-Steffensmeier and Smith
1996; Zaller 1992). Heterogeneity in the types of voters in each
wave of an RCS means that Granger’s aggregation theorem (1980)
still applies.

13A lagged dependent variable does not solve autocorrelation prob-
lems when data are fractionally integrated. We find that the lag of
a daily mean (e.g., Ȳ ∗

t−1) will be insufficient in the RCS case.

14A minimum of 50 time-points is a good rule of thumb for our
method since estimates of d are less reliable as T drops. We address
strategies for shorter T later in the article.

15With a larger number of time-points, values for d can be estimated
in Stata, RATS, OX, and R. Stata 12 allows the simultaneous esti-
mation of d alongside AR and MA parameters. See the supporting
information for R code for our simulations and examples.

Thus, Ȳ t is a function of two components: stochas-
tic (Ȳ ∗

t ) and deterministic (Ȳ ′
t). So, Ȳ t − Ȳ ′

t leaves the
stochastic component, Ȳ ∗

t , that is, the part of Ȳ t influ-
enced by Xs rather than by its own past history.

For exogenous variables at the aggregate level, the
same approach is followed. Where exogenous variables
vary within each month,16 means should be calculated
and noise models created for each X̄t . When an exogenous
variable varies only across time and not within a time
period (e.g., stock prices), one should find the appropriate
noise model for it and create Z∗

t , the movement of Zt not
due to the past history of Z.17 With Z∗

t , Ȳ ∗
t , and X̄∗

t ,
autocorrelation has been modeled on both sides of the
equation.

Up to this point, our proposed model simply uses
methods shown elsewhere to work for time series: find
the appropriate noise model and filter (i.e., Granger and
Newbold 1974 for I[0/1]; Box and Jenkins 1976 for
[p,0/1,q]; Clarke and Lebo 2003 for [p,d,q]). But we would
also like to study the individual-level data. For that, we
marry the logic of fractional differencing with multilevel
modeling and move next to the within-month study of
RCS data. This involves a filter applied to the individual-
level data prior to the estimation of an MLM.

Multilevel Models and Modeling
Both Dynamic and Static Processes

Together

Political scientists have increasingly relied on MLMs to
deal with hierarchical data in which “level-1” units are
nested within “level-2” structures (Bartels 2009a, 2009b;
Gelman et al. 2008). MLMs allow one to analyze how both
contextual and unit-specific factors predict a dependent
variable (e.g., Gelman and Hill 2007; Steenbergen and
Jones 2002). Beyond the substantive motivation, there
are also decisive statistical consequences if one ignores a
hierarchical structure. Since observations are not inde-
pendent, the error structure is a problem. For example, if
cases are drawn according to geographic areas or regions,
the data are no longer conditionally independent and er-
rors are spatially correlated. As a consequence, standard
errors will be biased downward and the probability of
Type I error increases (Skrondal and Rabe-Hesketh 2004).

16We discuss aggregation at the month level to match RCS data like
our first example. Of course, our approach is generalizable to other
levels of aggregation.

17To distinguish the two types of exogenous variables, we use Z for
those that vary only over time and X for those that also vary within
time-points.
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Temporal clustering is, of course, also a problem—
error components should be orthogonal to independent
variables. This is violated insofar as spatial or temporal
autocorrelation exists. In an l-level model, the residu-
als should be conditionally independent at l+1. This be-
comes tenuous with time in the model. And, if errors are
correlated over time, standard errors will be incorrect.

Various MLMs have led to useful advances with data
indexed over time. For one, MLMs have been used to
analyze true panel data, where multiple observations
are clustered at the country level (Beck 2007; Beck and
Katz 2007; Shor et al. 2007).18 Beck and Katz (2007)
note that if one assumes that a dynamic process exists,
an LDV can be included in the intercept equation. But
where the LDV is not measured, a different solution is
needed.

In RCS designs, the individual-level data are nested
within multiple, sequential time-points. As with geo-
graphic clusters in a single cross-sectional data set, cases
are not independently observed. MLMs are well suited
for these structures, as individuals can be viewed as em-
bedded within the date the specific cross-section was col-
lected (DiPrete and Grusky 1990).19 In MLM terms, the
individual-level observations, i, are the level-1 units and
are nested within level-2 units of time, t. Once ARFIMA
methods are applied at the aggregate level, we must next
pay attention to this hierarchical structure.

To fix problems of serial correlation at level-1, we sub-
tract the daily deterministic component from the level-1
dependent variable:

y∗∗
i t = yit − (Ȳ t − Ȳ ∗

t ). (3)

Note that this step removes the deterministic component
from yit , so that y∗∗

i t now consists of within-month as
well as non-temporally autocorrelated between-month
variation. We then filter our xs through the month-level
effects:

x∗∗
i t = xit − X̄ t . (4)

The logic is the same as that of Bafumi and Gelman (2006).
By accounting for level-1 and level-2 effects, correct pa-
rameter estimates can be retrieved.20

18For example, yi,t = �i + �xi,t + εi,t , and �i = �1 + ui , where i
may be a country-level indicator for observations 1 . . . ..n observed
repeatedly over time, t. In this case, the country is the level-2 unit,
observed repeatedly over time (level-1).

19DiPrete and Grusky (1990) propose an MLM for RCS data, but
our method is quite different by more fully considering degrees of
integration.

20To obtain within-month deviations, we remove the random and
nonrandom variation in X̄ t , where Xt = X̄∗

t + X̄ ′
t . Thus, x∗∗

i t =
xit − (X̄ t − X̄∗

t ) − X̄∗
t = xit − X̄ t .

A multilevel model now puts the double-filtered
data to work.21 The level-1 equation—the within-month
model—can be written as

y∗∗
i t = �1t + �1x∗∗

i t + u1i t . (5)

The intercepts, �1t , vary across months where �1 ∼
N(�2, �2). In other words, the intercept �1t represents the
month-averaged score of yit purged of autocorrelation. It
is simply Ȳ ∗

t . We can subsequently define these intercepts
to be a stochastic function of aggregated individual-level
effects, X̄ t, and aggregate-level covariates, Zt:

�1t = �2 + �2 X̄∗
t + � Z∗

t + u2t . (6)

The error terms for Equations (5) and (6) are represented
as u2t and u1i t for level-1 and level-2 units, respectively.

Combining the equations yields

y∗∗
i t = �1t + �1x∗∗

i t + u1i t + �2 X̄∗
t + � Z∗

t + u2t . (7)

Where y∗∗
i t is the double-filtered values for yit, which is a

function of level-1 xs, aggregate-level white noise Xs, co-
variates at level-2, and error components that vary within
and between months.

Our model is also well suited for the estimation
of time-varying parameters. As we show in our exam-
ples below, one can specify coefficients that will vary
across time for certain independent variables, w∗∗

i t . If a
level-1 relationship might change in different contexts, a
time-varying coefficient, �t , can be specified. Thus, Equa-
tion (5) can be expanded to

y∗∗
i t = �1t + �1x∗∗

i t + �tw
∗∗
i t + u1. (8)

The steps can be summarized as follows: First, create
monthly means for the level-1 data of interest, Ȳ t and X̄ t .
Second, find the proper noise models for them as well
as for level-2 series, Zt, that do not vary within months.
Third, filter each through its noise model to create level-
2 series free of autocorrelation, Ȳ ∗

t , X̄∗
t , and Z∗

t . Fourth,
remove month-level deterministic components from the
level-1 data. Fifth, estimate an MLM in two levels using
the double-filtered data.

Our model offers several advantages. We use the most
reliable techniques available—ARFIMA models—to filter
out level-2 autocorrelation. Addtionally, by taking the
deviations of i from level-2 values, we fix problems of
serial correlation at level-1. In addition, we are able to
include level-2 variables that do not vary within time-
points as covariates as well as investigate interesting time-
varying effects. In the next section, we use Monte Carlo

21Our approach is distinct from the differences-in-differences
(DID) model frequently used to analyze RCS data, where cross-
sections are included before and after a policy intervention (see
Athey and Imbens 2006 for a thorough review; see also Wooldridge
2001).
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analyses to compare the statistical consequences of our
approach to several alternatives.

Simulations

We expect that if the dynamic component is ignored,
estimates will be adversely affected, more so as time
dependence at level-2 grows. Even if a lag at level-2 is mod-
eled, bias will still be present to the extent that the lag in-
sufficiently accounts for autocorrelated errors. Moreover,
if errors are clustered—and thereby not independent—
the standard errors will be incorrect.

We simulate data meant to mimic the properties of
RCS data.22 We generated 11,000 data sets, with each con-
sisting of 300 waves and a sample size of 100 per wave.23

Aggregate values of the independent variable, X̄∗
t , were

created along with x∗∗
i t values for within-month varia-

tion.24 Level-1 observations, yit , were generated as a func-
tion of individual-level effects, x∗∗

i t (specified to have a
slope coefficient of 0.5), aggregate-level effects, X̄∗

t (spec-
ified to have a slope coefficient of 0.3), and random error.
Next, series for Ȳ t and X̄ t were calculated so that there
were 1,000 data sets for each value of fractional integra-
tion between 0 and 1 in increments of 0.1.25

We tested the statistical properties of eight estima-
tion strategies for each data set. We start by present-
ing “naı̈ve models” where we fail to separate out the
aggregate- and individual-level effects. We do this us-
ing (1) OLS (labeled here OLS-Naı̈ve) as well as (2) a
multilevel model (MLM-Naı̈ve) where intercepts vary
across months. We next report the results of six additional

22Recall that the many recent studies that have carefully analyzed
the properties of aggregate-level RCS public opinion data have all
found that d falls between 0 and 1 and is usually closer to 1 (see
Gil-Alana 2008 for a review of this literature). No study we know of
has tested for fractional integration in long-T data and found the
dichotomous ARIMA approach to be preferable.

23We drop the first five waves since there is insufficient data to
accurately fractionally difference the first few observations.

24Month-level means of x are drawn from a standard normal distri-
bution. We then duplicate these observations 100 times to generate
a data set size of 30,000. These observations serve as the month-level
random noise (X̄∗

t ). Next, we take a random draw from a normal
distribution to generate the within-month independent variable,
x∗∗

i t .

25We first calculated the month-level means for y and subtract yit

from these values. This gives us the deviations from the month-
level mean. Then we fractionally integrated the month-level means
and added back in the deviations, giving yit . We followed the same
process for xit . The only thing that we vary in the simulations
presented is d, the degree of fractional integration. We use the
Hurst R/S statistic (Hurst 1951). The value of d equals the Hurst
R/S coefficient minus 0.5.

strategies that could be used: (3) OLS pooling all data but
separating aggregate- and individual-level effects (OLS),
(4) OLS specifying aggregate- and individual-level effects
and including a month-level lagged dependent variable
(OLS-LDV), and (5) OLS accounting for nonstationarity
by fractionally differencing the aggregate-level monthly
means (ARFIMA-OLS). We also estimated three addi-
tional types of MLMs: (6) an MLM separating aggregate-
and individual-level effects and allowing intercepts to vary
across time (MLM), (7) a version of (6) that adds a month-
level lag (MLM-LDV), and (8) fractionally differencing
the aggregate series and allowing intercepts to vary across
time (ARFIMA-MLM).26

Simulation Results

Naı̈ve Models. The naı̈ve models are clearly insuffi-
cient.27 For OLS, the estimates fall between the true slopes
with low levels of d. But as d rises, so does the spread of the
estimates, and the average estimated coefficient is biased
toward zero. In other words, as the dependent variable
becomes less stationary, slopes become more biased and
less efficient.

The MLM-Naı̈ve method properly retrieves the
individual-level effect, but two problems are present: (1) it
ineffectively models aggregate-level processes, since they
are inseparable from individual-level effects (see also Ba-
fumi and Gelman 2006; Bartels 2009a); and (2) standard
errors are incorrect. As d increases, the standard errors
are biased downward, leading to incorrect inferences (see
Table S3 in the supporting information).

Additional Models. Beyond the naı̈ve models, we need
to confront the problems of modeling both individual-
and aggregate-level effects together as well as address the
likelihood of nonstationarity at level-2. The latter prob-
lem has been especially ignored by social scientists.28

Next, we explore the empirical consequences of six addi-
tional approaches: OLS, OLS-LDV, ARFIMA-OLS, MLM,
MLM-LDV, and ARFIMA-MLM.

What should we expect from each OLS approach? By
pooling all observations and running an OLS regression

26All simulations and analyses were carried out in R using re-
stricted maximum likelihood (REML). The MLM models were es-
timated using the lmer() function in the “lme4” package (Bates and
Maechler 2010). Our code is in the supporting information.

27See Figure S1 and the discussion that follows it in the supporting
information for further explanation.

28For instance, researchers studying campaign effects have merged
opinion data with spending (Kenny and McBurnett 1992) and
advertising data (Freedman, Franz, and Goldstein 2004) to examine
the consequences of aggregate variables on voter decision making
and behavior.
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(solution 3: OLS), we should retrieve incorrect parameter
estimates for the aggregate effects of x (X̄ t). Simply spec-
ifying an OLS model with a lagged aggregate dependent
variable, Ȳ t−1 (OLS-LDV), should produce unbiased and
efficient estimates only if the lag accounts for aggregate-
level autocorrelation (Achen 2000). Since this will not
occur in the presence of fractional integration, bias is ex-
pected. The approach of using an ARFIMA model for
month-level x (X̄ t) and month-level y (Ȳt) and employ-
ing OLS will result in incorrect standard errors since OLS
cannot effectively account for unobserved aggregate-level
variation.

The MLM approaches should be an improvement,
but the MLM assumption of independent level-2 er-
rors will be violated insofar as level-2 units are corre-
lated. Thus, an MLM without filters will produce bi-
ased and inefficient estimates as d increases. Similarly,
an MLM with a lagged dependent variable, Ȳ t−1, will
produce biased estimates and standard errors that are
increasingly incorrect as d increases. We expect that the
ARFIMA-MLM model will prove to be the most reliable
approach.

Figures 1 and 2 display our estimates of bias and
inefficiency for the various OLS and MLM models, re-
spectively. Bias is the average of each parameter estimate
divided by the true parameter value for each level of d.
Thus, a value of 100 indicates a lack of bias. We calculate

efficiency as
√∑

(�−�̄)2

n , the degree of variation around
the average estimate, where n is the number of data sets
(1,000). Smaller values indicate greater efficiency. We
display the results for four sets of estimates: bias and
RMSE for each of the aggregate-level effects (� for X̄ t

for the OLS, OLS-LDV, MLM, and MLM-LDV models
and � for X̄∗

t for the ARFIMA-OLS and ARFIMA-MLM
models) and for the individual-level effects (� for xit

for the OLS, OLS-LDV, MLM, and MLM-LDV models
and � for x∗∗

i t for the ARFIMA-OLS and ARFIMA-MLM
models).

Figure 1 demonstrates that OLS and ARFIMA-OLS
perform reasonably well in terms of retrieving the correct
slope for the between-month effect of x on y. ARFIMA-
OLS is the most accurate, which is to be expected since
it effectively controls for nonstationary month-level ef-
fects. OLS-LDV, however, is problematic; the estimated
slopes are biased downward as d increases. The upper-
right quadrant similarly shows that ARFIMA-OLS has
no problems of inefficiency, whereas OLS and OLS-
LDV grow more inefficient as d increases.29 All three

29See Figures S2 and S3 in the supporting information for the
standard error distributions of each approach under different as-
sumptions about d. The ARFIMA-MLM approach clearly stands
out as best.

methods perform well in terms of retrieving correct
individual-level effects, evident in the fact that the lines
can barely be discerned in the bottom-left quadrant of
Figure 1. So long as one subtracts the month-level means
from the observed data, correct within-month param-
eter estimates can be retrieved. However, the efficiency
of estimates is compromised in the case of the OLS
models.

Figure 2 presents the diagnostics for the MLM ap-
proaches. ARFIMA-MLM estimates of � for X̄∗

t prove to
be the best in terms of being unbiased and efficient. In all,
the results demonstrate the importance of accounting for
nonstationarity.

As one final check on the models, we measure the
variation in the standard errors for these models at various
levels of d. To this end, we present “optimism” in Table 1,
which contrasts the estimated standard errors to sampling
variation (see Shor et al. 2007). Following Beck and Katz

(1995), Optimis m = 100 ×
√∑1000

l=1 (�l −�̄)2∑1000
l=1 S E �l

. Values greater

than 100 indicate that true sampling variation is greater
than estimated variation and that standard errors are too
small; values less than 100 indicate that standard errors
are too large, since true sampling variation is smaller
than estimated variation (Beck and Katz 1995). Thus,
values above 100 increase Type 1 error rates, the critical
inferential problem here.

As Table 1 illustrates, the standard errors are much too
small for all methods except the ARFIMA-MLM model.30

At all levels of d, the standard errors are severely “over-
confident” in the OLS models. That is, true sampling
variability is much larger than estimated variability, lead-
ing to t-statistics that are too large. For the OLS and
OLS-LDV estimates, this effect grows as d increases. This
is also evident for the MLM and MLM-LDV models. As
the aggregate means are increasingly a function of past
values, the standard errors are underestimated.

The ARFIMA-OLS models do well at various val-
ues of d but have optimism scores that are consistently
high due to the model’s inattention to aggregate-level
variation. Only after accounting for aggregate tendencies
as well as individual-level heterogeneity can one retrieve
standard errors that reflect true sampling variability. The
winner is the ARFIMA-MLM model.

In all, the simulations strongly support the need to
consider and model the memory across time-period clus-
ters. With (OLS-LDV and MLM-LDV) or without (OLS
and MLM) a lagged cluster mean, the models perform
poorly when long memory is ignored. As d increases,

30We present only the optimism estimates for the aggregate-level
effects. The optimism estimates hover near 100 for the individual-
level effects in all six models.
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FIGURE 1 Bias and RMSE for OLS Coefficients
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Note: For the OLS and OLS-LDV models, this is the coefficient for X̄ t . For the ARFIMA-OLS models, it is the coefficient
for X̄∗

t . Lines in the bottom panels are all present but overlap.

these models produce biased and less precise param-
eter estimates and standard errors that are too small.
On the other hand, ARFIMA-MLM and ARFIMA-OLS
produce unbiased parameter estimates when fractional
integration is modeled. Yet, ARFIMA-OLS estimates of
aggregate-level standard errors will be too small, elevating
the risk of Type I error. Thus, we advocate the ARFIMA-
MLM model when cross-sections are related over
time.

What to Do When T Is Too Short for
ARFIMA

As mentioned, having T > 50 is a good rule of thumb for
reliable estimates of d and the use of ARFIMA methods.
But even with much shorter data sets, an MLM approach

can prove useful in overcoming worries of autocorrela-
tion, for examining multiple levels of analysis at once,
and for studying time-varying relationships. Shorter RCS
examples include the cumulative American National Elec-
tion Study (see, e.g., Stoker and Jennings 2008), where an
MLM might test the effects of context on electoral choice
over 20 or so elections. One can apply stationarity tests to
such data and generalize our ARFIMA approach to Box
and Jenkins’s (1976) original ARIMA framework. That
is, simpler models are available when d is an integer—
or when too few waves exist to properly estimate d as a
real number. When diagnosed as stationary (d = 0), a

series can be modeled as Ȳ t = (1−�q L q )
(1−�p L p ) εt ; and, where d =

1, Equation (1) simplifies to a differenced version of Y t :

�Ȳ t = (1−�q L q )
(1−�p L p ) εt . Following that, the second filter can

be applied to the individual-level data. If the best model
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FIGURE 2 Bias and RMSE for the Random Intercept Multilevel Models
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Note: For the MLM and MLM-LDV models, this is the coefficient for X̄ t . For the ARFIMA-OLS models, it is the coefficient
for X̄∗

t . Lines in the bottom panels are all present but overlap.

is simply (0, 0, 0)—that is, no autocorrelation exists in the
aggregate—then the model reduces to mean-centering of
the level-1 units (as suggested by Bafumi and Gelman
2006).

In cases where T is very short (e.g., less than 10) and
tests of stationarity are unreliable, one could simply use
theory to decide whether differencing is appropriate at
level-2. For example, with 10 monthly waves and a de-
pendent variable of partisanship, assuming long memory
and differencing is a better choice than leaving the level-
2 data in level form. With longer T, however, it is best
to begin with an ARFIMA noise model at level-2. Next,
we demonstrate the usefulness of the ARFIMA-MLM ap-
proach in three separate examples.

Applications: ARFIMA-MLM at Work

In the three examples that follow, we demonstrate the ad-
vantages of our method. First, in a comparison to another
MLM approach to RCS data (Hopkins 2012), ours of-
fers improved statistical accuracy and different aggregate-
level findings. Second, expanding a strictly time-series
approach (Lebo, McGlynn, and Koger 2007), our model
allows a richer depth of theoretical development and em-
pirical testing. And third, using the National Annenberg
Election Study, our model’s flexibility allows the study
of a complex campaign environment not fully explored
in the literature (e.g., Brady and Johnston 2006; Kenski,
Hardy, and Hall Jamieson 2010).
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TABLE 1 Optimism Index for Six Modeling
Approaches

Between-Day Effects (bx∗)

OLS- ARFIMA- MLM- ARFIMA-
d OLS LDV OLS MLM LDV MLM

0 739 1896 737 104 267 104
0.1 783 1865 734 110 262 103
0.2 857 1630 726 118 228 92
0.3 1083 1436 753 145 200 106
0.4 1663 1244 746 214 172 105
0.5 2566 1056 700 312 146 98
0.6 4002 1603 713 456 221 100
0.7 5231 2433 713 565 336 100
0.8 6677 3747 714 698 521 101
0.9 8372 5895 710 856 824 100
1.0 8983 7770 699 907 1088 98

Note: For the OLS, OLS-LDV, MLM, and MLM-LDV models, these
are based on the standard errors of coefficients for X̄ t . For the
ARFIMA-OLS and ARFIMA-MLM models, they are based on the
standard error of the coefficient for X̄∗

t .

Example 1: What Other MLMs Miss:
Hopkins’s (2012) “Whose Economy?”

Our first of three examples presents our toughest test.
Since others have suggested that RCS data are best
dealt with in an MLM format, can we demonstrate
ARFIMA-MLM’s value over other multilevel approaches?
In “Whose Economy? Perceptions of National Economic
Performance during Unequal Growth,” Hopkins (2012)
uses a multilevel model to study over 215,000 respondents
nested in 388 months of the Michigan Survey of Con-
sumer Attitudes. These RCS data are a popular source for
subjective evaluations of the economy (e.g., Bafumi 2010;
Clarke et al. 2005; DeBoef and Kellstedt 2004; Krause
1997; MacKuen, Erikson, and Stimson 1992).

Hopkins’s MLM is justified to explain both
individual-level factors and their response to aggregate
data: “To understand how economic conditions influence
Americans’ economic perceptions, it is critical to observe
attitudes under a range of economic conditions” (2012,
56). Indeed, the key conclusion of the article is at the ag-
gregate level. When asking, “Whose economy matters?”
for the formation of economic assessments, “the answer
from the SCA is that Americans at all income levels weigh
income growth at the low end in their responses” (2012,
68). This is based on regressing sociotropic assessments
on aggregate income growth for five groups defined by
income percentile.

FIGURE 3 The Effect of Income Growth for 20th
Percentile of Income Using Three
Modeling Approaches
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Note: Each bar represents the t-statistics for the respective group’s
regression coefficient in three modeling approaches (darkest is
ARFIMA-MLM, medium is MLM, and lightest is MLM-LDV).

We replicate Hopkins’s analyses and also try the
MLM-LDV and ARFIMA-MLM approaches. As Hopkins
does, we do this separately for rich, middle-income, and
poor respondents. Figure 3 displays the t-test statistics
for the key finding—the effect of 20th percentile income
growth—in three models.31 Using ARFIMA-MLM, the
key effect essentially disappears; light gray bars show the
results for Hopkins’s method, and the black bars are for
ARFIMA-MLM (e.g., t = 1.41 for poor respondents).32

What the plain MLM misses is that the dependent
variable, aggregate sociotropic evaluations, is fractionally
integrated (e.g., the d estimate is 0.81 for poor respon-
dents). Ignoring between-month dynamics leads to in-
correct parameter estimates and an increased likelihood
of Type I error.33 The t-statistics associated with income
growth at the 20th percentile are considerably greater
when ARFIMA filtering is not used. As such, our method

31Our code and the full results of all nine models (Tables S5, S6,
and S7) are in the supporting information.

32For consistency across models, we allow for random effects across
months and years. Thus, our estimates are not identical to those
reported in Hopkins (2012), but are substantively equivalent. Also,
we drop the first five cross-sections from the data (as described in
the simulation).

33Hopkins’s MLM employs a random intercept across years and
months, but this does not solve the serial correlation problem. We
used this specification, since it is more similar to the MLM-LDV
and ARFIMA-MLM models.
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gives an inconclusive result as to whether lower-strata in-
come growth shapes national economic evaluations.34 Re-
call that the simulations found an optimism index much
larger than 100 for d = 0.8 with a lagged value of Ȳ in-
cluded. Thus, even with the wealth of data in Hopkins’s
analyses, neither the MLM nor the MLM-LDV can deal
with the data’s inherent autocorrelation. The ARFIMA-
MLM model (optimism = 100) in such cases is up to the
task. The best methods available to time-series analysts
need to be married to the MLM approach.

Example 2: Expanding a Time-Series
Analysis of Party Unity to an

ARFIMA-MLM Setup

In our second example, we show the gains of expanding
a strictly macrolevel analysis to include individual-level
data: we can specify time-varying effects for covariates
and compare effects occurring at two levels. Lebo, McG-
lynn, and Koger (2007) use ARFIMA techniques to ex-
plain how yearly levels of Democratic and Republican
Party unity interact closely with each other in congres-
sional roll-call votes from 1789 to 2000. In the Strategic
Party Government model, the two parties balance their
voting cohesion over time—when a party votes too co-
hesively, it risks pulling members away from the wishes
of their constituents, but a lack of cohesion risks losing
important votes and thus electoral support. The strong
findings in the aggregate demonstrate this long-term pat-
tern over the course of American history but leave a great
deal unanswered. For one, is this strategic behavior a con-
sistently useful way of understanding party behavior on
roll calls within congresses? Also, has the era of polariza-
tion affected the relationship between the parties in their
roll-call battles?

The original data are RCS—observations are nested
within years but do not repeat over multiple time-
points—and we investigate relationships using data at
both the roll-call and yearly levels. Beginning with the
29,734 final passage party-line votes from the U.S. House
of Representatives nested in 222 years, we calculated year-
level means for majority and minority party unity and
estimated ARFIMA models for each in order to gener-
ate white noise series (i.e., X̄∗

t and Ȳ ∗
t ).35 The second

34In the supporting information, we present models restricted to
include only the 95th and 20th percentiles of income growth. The
substantive results remain identical—the t-statistics do not reach
conventional levels of significance across income categories.

35Both majority and minority party unity are fractionally inte-
grated, with d values of 0.77 and 0.81, respectively. See the sup-
porting information for further discussion.

TABLE 2 An ARFIMA-MLM Model of Majority
Party Voting Unity in the House of
Representatives, 1789–2006 (Party
Votes Only)

� (SE) t
Level-1 (within years) N = 29,599

Intercept 1.390 (0.66) 2.11
Minority unity 0.128 (0.01) 23.15
Policy vote –6.988 (0.32) –21.86
Long session –1.237 (1.37) –0.90
First session 4.715 (1.33) 3.56
Level-2 (between years) T = 217

Minority unity 0.557 (0.07) 7.67
Majority cohesion–NOMINATE 1 –44.461 (28.22) –1.58
Majority cohesion–NOMINATE 2 –42.09 (16.20) –2.60
Ideological distance–NOMINATE 1 –12.05 (14.68) –0.82
Ideological distance–NOMINATE 2 1.936 (5.76) 0.34
Majority size –0.504 (0.10) –5.28
Error Correction Mechanism (t–1) –0.226 (0.07) –3.61
Number of votes/years 29,599/217

filter subtracts the year-level means from individual ob-
servations of xi and yi, respectively minority and major-
ity unity on roll-call i. With our double filtering done,
we add five more variables to the aggregate model (i.e.,
Z̄∗

t ): the percent of the House held by the majority and
both median-to-median distance between the parties and
standard deviations for the majority party in each of the
first and second dimensions of DW-NOMINATE scores
(Poole and Rosenthal 1997).

The findings of our ARFIMA-MLM model (Table 2)
tell a much more nuanced story than the original one.
At level-2, the original relationships all stand up: Major-
ity Party Unity is closely related to Minority Party Unity,
close enough that the error correction mechanism is sig-
nificant. The size of the majority is also important—a
larger majority party can afford to be less unified (see
also Patty 2008).

Looking at the effect of Minority Unity on final pas-
sage votes within years, we still see a very strong relation-
ship (t = 23.15). Next, we estimate a random coefficient
for Minority Party Unity’s year-by-year effect at level-1.
The solid line in Figure 4 gives us the overall coefficient,
whereas the jagged line gives us the yearly value (and Loess
smoother) for �t , the effect of Minority Party Unity on
Majority Party Unity for individual roll-call votes. The
relationship obviously varies a great deal over time, and
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FIGURE 4 The Time-Varying Effect of Minority Unity on
Majority Unity, 1794–2006
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Note: Coefficient and smoother for the roll-call-level effect of Minority Party Unity on
Majority Party Unity.

pooling would hide this entirely.36 In particular, the
strength of the relationship has been dropping for some
time and is now essentially zero. In an increasingly polar-
ized political environment, there is extremely little varia-
tion in unity across votes.37 As members of Congress ap-
peal to increasingly polarized constituencies, the strategic
adjustments parties make are primarily aggregate shifts
from one year to the next, rather than within-Congress
variation across roll-call votes.

Unlike the Hopkins (2012) example, here the original
study used only aggregate data and accounted for auto-
correlation in the data. However, it was limited in scope
in that the level of analysis was strictly aggregate. The
use of ARFIMA-MLM opens up possibilities for study-
ing the thousands of individual roll calls that compose
the complete RCS data set. A similar approach could ex-
tend studies of key dependent variables in public opinion,

36Tests for time-varying slopes: no random slope (AIC = 276,331,
BIC = 276,447, –LL = 138,151), random slope (AIC = 275,441,
BIC = 275,574, –LL = 137,705), p < .01 for the likelihood ratio
test.

37See the supporting information for graphs of the data, the distri-
bution of Minority Party Unity and Majority Party Unity by decade,
and further details.

Supreme Court decisions, or conflicts nested in time, for
example.38

Example 3: Modeling Dynamic Effects
during a Campaign

The 2008 presidential election campaign was a complex
one. A full and flexible model of vote choice or candi-
date evaluation should be able to account for the effects
of the unfolding economic crisis as well as time-varying
individual-level factors such as sociodemographics and
economic and political judgments. Kenski, Hardy, and
Hall Jamieson (KHHJ 2010) study the election from mul-
tiple angles using the daily data of the National Annen-
berg Election Survey (NAES). In some dynamic analyses,
they demonstrate how assessments of the parties, can-
didates, and issues changed—sometimes dramatically—
over the course of the campaign (e.g., 2010, 4, 18, 19,
93, 156). Elsewhere, they pool together thousands of
respondents interviewed over several weeks and run static

38See Table S1 in the supporting information for a list of recent
examples where our approach could prove useful.
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TABLE 3 An ARFIMA-MLM Model of Campaign Effects

Within Day Between Day

B (SE) t B (SE) t

Fundamentals
Intercept –0.09 (0.11) –0.77
Party identification 0.13 (0.01) 10.09 –0.74 (0.63) –1.16
Ideology (conservative) –0.06 (0.02) –3.28 –1.01 (0.78) –1.29
Vote Bush in 2004 –0.00 (0.05) –0.10 —
Approve Bush –0.36 (0.05) –7.03 2.65 (2.44) 1.09
National economy –0.11 (0.05) –2.41 0.14 (2.02) 0.07
Personal economy –0.02 (0.05) –0.48 –4.67 (2.33) –2.00
Sociodemographics
Gender (female) –0.03 (0.03) –0.79
Age (in years) 0.004 (0.001) 2.86
Black 0.15 (0.07) 2.19
Hispanic 0.16 (0.17) 0.97
Education –0.005 (0.007) –0.70
Income (in thousands) 0.0003(0.0004) 0.71
Media
Number of days saw campaign info (TV) 0.02 (0.008) 2.31 0.46 (0.30) 1.34
Number of days heard about campaign (radio) 0.02 (0.006) 3.25 0.19 (0.29) 0.68
Number of days saw info (newspaper) 0.008 (0.006) 1.34 0.35 (0.26) 1.35
Number of days saw info (Internet) 0.008 (0.006) 1.34 –0.49 (0.25) –1.95
Campaign Messages
Elect McCain is like reelecting Bush 0.65 (0.05) 13.87 0.47 (2.20) 0.21
McCain is too old 0.37 (0.04) 8.73 0.65 (1.72) 0.38
Obama’s ideology (liberal) –0.05 (0.02) –2.33 0.60 (1.03) 0.59
Experience (McCain-Obama) –0.14 (0.01) 17.29 0.23 (0.37) 0.63
Judgment (McCain-Obama) –0.24 (0.01) –29.90 0.64 (0.40) 1.58
Patriotic (McCain-Obama) –0.12 (0.01) –16.92 –0.57 (0.36) –1.60
Values (McCain-Obama) –0.36 (0.01) –47.61 –1.35 (0.38) –3.52

Note: For consistency, we present the random intercept model. The intra-class correlation is small (<0.01), and the OLS-ARFIMA model
separating the within- and between-day effects yields equivalent results. The model is similar to Kenski, Hardy and Hall Jamieson’s (2010),
with several qualifications. Rather than vote choice, the dependent variable is Evaluation of Obama–Evaluation of McCain.
Source: 2008 NAES.

analyses (e.g., 2010, 168, 271, 275, 299, 316). Aside
from the statistical problems of pooling, KHHJ neglect
to exploit the data’s capability to simultaneously study
how time-varying individual-level factors and dynamic
campaign-level processes influence political behaviors
and judgment.

In our final example, we use ARFIMA-MLM to assess
the roles played by the “fundamentals” and campaign-
specific characteristics while taking account of the (per-
haps time-varying) voter-level factors that affected eval-
uations of Senators Obama and McCain. Our dependent
variable measures positive versus negative evaluations of
Barack Obama relative to John McCain, with 0 as a mid-

point and higher values indicating pro-Obama sentiment
(M = 0.16, SD = 4.67).39 In the aggregate, the dependent
variable is demonstrably nonstationary (d = 0.90), thus

39We include observations beginning with Senator Obama’s cap-
turing of the Democratic nomination in June through to Election
Day. Except for four questions that lack observations prior to Octo-
ber 2008 (“believing that Obama will better handle the economy,”
rating of Sarah Palin as “not ready to be president,” rating of Joseph
Biden as “ready to be president,” and believing that “Obama will
raise my taxes but McCain will not”), our covariates are the same
at KHHJ’s model (2010, 299–300). However, we do not use their
dichotomous dependent variable, vote choice. The intuition and
ARFIMA filtering are the same for a dichotomous dependent vari-
able, but the method involving our second filter is different.
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FIGURE 5 Slopes for Sociotropic Economic Evaluations and Party Identification over
the 2008 Campaign
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making our ARFIMA filtering especially necessary.40 On
the right-hand side, our covariates follow KHHJ’s (2010,
299) specification and include four categories: fundamen-
tals, sociodemographics, media, and opinions on central
campaign messages.

Our ARFIMA-MLM model provides estimates for
within-day and between-day effects in Table 3. The sta-
tistically significant findings of the original model are
italicized. Several important characteristics emerge and
demonstrate the difference in aggregate- and individual-
level inferences. For example, an optimistic assessment of
the state of the national economy translates into more
positive McCain evaluations (b = –0.11, SE = 0.05,
p < .05), but as the electorate’s opinion varied over
the campaign, this did not affect candidate evaluation
in the aggregate (b = 0.14, SE = 2.02, ns). The re-
verse is true for personal economic evaluations: ratings
of respondents’ own financial situation have a nonsignif-
icant impact on evaluations (b = –0.02, SE = 0.05, ns),
whereas the aggregate movement of the variable led to
more positive McCain assessments (b = –4.67, SE =
2.23, p < .05). Certainly, the effects of the economy
and economic judgments on political evaluations are
complex. Using RCS data to the fullest extent prevents
us from oversimplifying the relationships present in the
data.

Lastly, in a differently specified model, we examine
how economic evaluation and party identification shape
candidate evaluation. We estimate one model predict-

40We follow KHHJ’s practice of calculating five-day rolling averages
for the aggregated series to overcome the noisiness of the day-level
aggregates caused by the small daily samples.

ing candidate evaluation in which the slopes are fixed
across days, and a second model allowing the within-day
slopes, �t , to vary across days for economic evaluations
and party identification.41 The time-varying coefficients
(plus a Loess smoother) are plotted in Figure 5, with
the solid lines representing the constant coefficient we
would get if we lose the flexibility of estimating �t . In line
with the notion that campaigns activate and reinforce
latent predispositions (Lazarsfeld, Berelson, and Gaudet
1944), we see these effects grow significantly over the five-
month period. In all, this example gives us a nice array
of the advantages of the ARFIMA-MLM approach: (1)
individual- and aggregate-level relationships are complex
and can be studied simultaneously, (2) the time-varying
effects of covariates can be studied, and (3) dealing with
level-2 nonstationarity makes for trustworthy statistical
inferences.

Conclusion

Given what is known about the problems of time-series
data and our investigations here, time-level clustering is
an important issue to consider in RCS data sets. Most of
the prior work using RCS data has been unsatisfactory—
analyzing either within or between processes exclusively,
not both simultaneously. We demonstrate that failing to
account for dynamic effects that exist can lead to biased
parameter estimates and incorrect standard errors. Our

41We refer to these two models as Example 3A and 3B in the sup-
porting information.
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solution is a two-step filtering process where means are
retrieved, a level-2 ARFIMA model is specified, and then
level-1 data are filtered through these estimates. Each of
the other seven approaches we test encounters problems
in one area or another, but our ARFIMA-MLM always
performs well, especially as memory in the aggregates
gets longer.

In addition, as demonstrated in our last two exam-
ples, we can include time-varying coefficients for some
covariates. To be sure, with so much data, the RCS de-
sign is a great resource for studying time-varying rela-
tionships. Allowing the constants and coefficients to vary
from one wave to the next while also measuring level-
2 factors means that the effects of level-1 variables can
be seen to rise and fall according to dynamic contex-
tual factors. Even so, without a method such as double
filtering, the inferences from such an exercise would be
suspect.

It is worth noting additional points of flexibility
within our framework. Where T is lower, one can switch
to models that do not involve estimating the fractional
integration parameter, d. ARMA and ARIMA models
are just particular types of ARFIMA models but are
safer to estimate up until the point of about t = 50
(Dickinson and Lebo 2007). Estimating a (p, 0/1, q)
model and then filtering values at level-2 will allow the
same implementation of our method one could get with
longer T.

Additionally, our ARFIMA-MLM framework can
certainly be extended to PCSTS designs, but with two
notable caveats. First, the number of pseudo-waves that
can be compiled into an RCS design may be quite high,
perhaps running into the hundreds of consecutive waves.
With PCSTS, however, long data sets are rarer. Yearly
data by country often top out at t = 65 for the post-
war era. True panels of individual-level data are unlikely
to ever approach the t of an RCS design. One can only
wish for something like the three- and four-wave pan-
els sometimes seen in the National Election Study or the
British Election Study to be carried on at frequent inter-
vals for decades. With a shorter t, the PCSTS analyst is
best served by estimating a simpler noise model at the
aggregate level, but the rest of our framework would still
apply.

Second, the PCSTS analyst has other methods avail-
able to control for autocorrelation, such as panel-
corrected standard errors (Beck and Katz 1995). Dif-
ferencing or using a lagged dependent variable are two
imperfect solutions, but they are still improvements on
simply pooling the data or ignoring the sequence of the
waves. Or, by differencing all the variables in a dynamic
panel (Baltagi 2005), unit-specific idiosyncrasies can drop
out of a PCSTS model. Our double filtering method can

be added to this list of solutions but, admittedly, has more
competition in that particular toolbox.

We encourage researchers to adopt the ARFIMA-
MLM model when analyzing RCS data or long panels
and pseudo-panels. By using multilevel models to study
data nested in time, not only can researchers capture con-
temporaneous variation, but they can also directly model
dynamic processes. Taken together, these results suggest
that time-level clustering is crucial to consider, and with
greater attention to simultaneously modeling static and
dynamic processes, this will provide a richer depiction of
political and social phenomena.
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